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1 Summary

Rockwell International’s objective was to develop a robust and state of the art
FLIR/LADAR target detection and identification system for the reconnaissance, surveil-
lance, and target acquisition program. The algorithm suite was to be integrated into the
Unmanned Ground Vehicle (UGV) platform. But due to 1) program changes such as
the late availability of the LADAR sensor unit and 2) funding restrictions in calendar
year 1996, the primary goal was able to be addressed in this contract. This report de-
scribes the work accomplished towards the objective; documenting the major successes
and conclusions that were obtained in the process.

Rockwell’s major successes during the contract period are the following items.

e Developed A New FLIR/LADAR ATD/I Framework: A foundation for an
innovative ATD/R/I system was developed for others to use. The new approach
incorporates state of the art techniques such as FLIR/LADAR feature level fusion
with clutter suppression and hierarchical classification algorithms.

o Developed FLIR-Based Background Suppression Software: A software pack-
age for integration into the UGV was developed and delivered to Lockheed Mar-
tin in Denver during the month of December, 1995. It incorporated many of the
FLIR-based background suppression ideas in this report.

During the process of planning, research, and the development of algorithms towards the
objective, the following conclusions were reached:

e To obtain high detection, low false-alarm rates, and robust identification of targets,
one must deal with background suppression at the onset. It must be integrated into
any planned ATD/R/I system. Ground rules must be established on the difference
between targets and clutter objects.

e Humans recognize objects first as categorical levels. Hierarchical classification
techniques, that were developed under this contract, learn categorically. The
approach shows much promise in advancing ATD/I technology.

e Fusing FLIR and LADAR data into a common feature vector as discussed in this
report is a powerful method in exploiting the input data.




2 Introduction

The FLIR/LADAR Fusion For Target Identification (FLFTI) program was designed to
aid the Unmanned Ground Vehicle (UGV) Reconnaissance, Surveillance, and Target
Acquisition (RSTA) program. The program’s goal was to improve the state of the art
in Automatic Target Detection and Identification (ATD/I). Beginning on September 12,
1993, it covered a 36-month period. The contract had Option I renewed for calendar year
1995. In addition, two no-cost extensions were granted through August, 1996.

This report describes the work accomplished between September 12, 1993 through
August 30, 1996 with emphasis on results after Demo C and Demo II.

2.1 Overall Objective

Rockwell International’s objective was to develop a high performance FLIR/LADAR
sensor algorithm suite for target identification that advances the state of the art in
image understanding within a Surrogate Semi-autonomous Vehicle (SSV) and RSTA
environment.

The program’s objective was to develop and demonstrate
e adaptive background suppression (both FLIR-based and LADAR-based),
e environmental characterization/prediction, and
e an enhanced, FLIR/LADAR ATD/I system with adaptive, model-based capability
(with further capacity to perform FLIR/range-to-target identification).

As shown in Figure 1, a three-pronged approach that incorporated (1) adaptive background
suppression, (2) environmental prediction, and (3) adaptive model-based techniques was
developed to implement the above objective. The aim was to modify the existent

Adaptive
Background
Suppression

Adaptive
Model-Based
Techniques

Environmental/
Characterization
Prediction

Rockwell’'s
Baseline
ATD/1 System

Enhanced
FLIR/LADAR
ATD/| System

Figure 1. An baseline plan called for adaptive background suppression, environmental
prediction, and adaptive model-based techniques to modify Rockwell’s
baseline system in order to arrive at the desired version.




Rockwell (baseline) ATD/I algorithm suite. The outcome was to be an enhanced
ATD/I version that would achieve a high degree of compatibility within the RSTA/UGV
framework. But funding restrictions for calendar year 1996 and the late availability of
the government furnished LADAR sensor unit (beyond Demo II) curtailed the effort.

Figure 2 describes the changes to the original approach. The diagram shows that the
background suppression module became the core for the enhanced ATD/I system (in
generic terms, background suppression algorithms reduce the interfering effects of the
surrounding target region during detection and identification). The move was wise; since,
the feature extraction/classification paradigm was intended to be used for the overall
system from the beginning of the program. The background suppression module (FLIR
and LADAR versions) became the testing ground for core algorithms that were to be used
again for the enhanced ATD/I system. In addition, capabilities from earlier baseline ATD/I
work plus new model-based techniques were channeled into the background suppression
algorithm suite.

Adaptive
Model-Based
Techniques

Rockwell’s
Baseline
ATD/i System

Adaptive
Background
Suppression

7 Not Done Under
Current Contract

Figure 2. Due to program restrictions for calendar year 1996 and the late availability of the
LADAR sensor, only a part of the enhanced system was completed. With inputs
from the Rockwell baseline and adaptive model-based techniques module, the
adaptive background suppression module became the core of the new system.
The environmental prediction module was omitted altogether.

2.2 Demo II Objective

Rockwell’s tasks for Demo II were: (1) to have the FLIR-only, background suppression
algorithm integrated into the UGV environment for real-time use; and, (2) to implement
an enhanced, FLIR-based or FLIR/LADAR ATD/I system as a laboratory demonstration.
A version of the background suppression software that conformed to the Interface Control
Document (ICD) specifications was delivered to Lockheed Martin in December 1995 for
incorporation into their SSV’s. But due to funding restrictions, no laboratory demo for
the second task was possible.




3 Methodology

From the outset, the aim was to build, in stages, on the successes of (1) previous
work performed during the contract; and, (2) software gleaned from earlier in-house
algorithms (see [Roc94] and [GW94]). While working through the limitations mentioned
in Section 2, the goal now became to use the background suppression module as the
framework with which to develop the enhanced ATD/I system. The underlying motivation
was to advance the state of the art in ATD/I systems by the following key idea.

In order to detect and identify tactical military targets, new systems must come on line
that are able to process data quickly and adapt to ever-changing environments. One
manner in which this goal can be accomplished, is by converting and condensing the
input imagery efficiently so as to make the process invariant to changes in translation,
rotation, scaling, and other types of deformation. Powerful categorization techniques
can be applied next to the data so that the system is able to adaptively cope more
effectively under high background clutter and target occlusion/articulation.

A feature extraction/classification paradigm was used to implement the above idea (this
effort is shown pictorially in Figure 3). The design was general enough so that it could
be adapted for FLIR-based, LADAR-based, or fused FLIR/LADAR target detection and
identification systems. The plan was to take the input imagery, after selecting likely
target sub-regions, convert them into a designated transform space (e.g., log-polar or 3D
Hough) for invariant purposes, then perform classification on a condensed version of the
set. After appropriate training off-line with a representative feature vector database, the
classification process would then detect targets in clutter for the background suppression
algorithm or recognize sub-parts towards target identification in the ATD/I case.

Adaptive Model-Based Rockwell's Baseline
Techniques ATD/I System

N

Feature Extraction

Adaptive
Background
Suppression

Classification

Not Done Under
Current Contract

Figure 3. The adaptive background suppression module became the framework with which
the proposed enhanced FLIR/LADAR ATD/I system was to have been built. The
feature extraction/classification paradigm approach was used. The background
suppression module implementation of the approach would be general enough to
use for the overall ATD/I system (demonstrated by the arrow pointing upwards to
a version outside the background suppression module).




Section 3 is an explanation of the methodology used for this contract and how the feature
extraction/classification algorithms affected the overall work. Specifically, this work
dealt with log-polar and 3D Hough transform-based feature extraction and hierarchical
classification; it is described in Sections 3.1 and 3.2, respectively.

3.1 Feature Extraction

Feature extraction converts the unwieldy output from the sensed image to a manageable
size for further processing. Quite often it removes translational, rotational, scaling, and
other distortional effects in 2D or 3D. For this application, the basic idea was to map
the pre-processed input data into transform space, either log-polar or 3D Hough, before
classification.

Sections 3.1.1 and 3.1.2 depict the transform-based approach as it was developed and
implemented in FLIR (log-polar transform) and LADAR (3D Hough transform) versions
of the background suppression algorithm. In Section 3.1.3, an overall feature vector is
proposed that was planned for the enhanced, FLIRZLADAR ATD/I system.

3.1.1 2D FLIR-Based Feature Extraction in Background Suppression

A FLIR-only background suppression algorithm has been developed under this contract
that increases overall (FLIR-based) target detection/identification performance (see Sec-
tion 4.1.1). The rationale for such an algorithm is as follows.

It is known that one must lower the target detection threshold to detect faint or
hard-to-see targets in FLIR imagery. As a consequence of lowering the threshold, a
higher number of clutter objects are introduced to the overall ATD/I system. One is
relegated 1o live with a higher false-alarm rate for FLIR-based target identification
in many applications. The background suppression approach developed here will be
able to prune false clutter off target candidate lists effectively by identifying objects
that are obviously clutter while accepting only targets and few very near target-like
clutter objects. The algorithm begins by detecting digital blobs (i.e., indicative of
wheeled vehicles, tank turrets, etc.) from FLIR imagery by using a "spoke filter" (see
[CGRI1] for the foundational paper on the spoke filter and Section 3.1.1.1). It then
merges a group of detection hits that are close together (e.g., multiple hits may occur
near a target’s wheel or track area, etc.). The FLIR-based, background suppression
algorithm generates a condensed feature vector based on the shape and the internal
gray level to background clutter standard deviation ratio for every candidate object
selected by the spoke filter. The technique uses a log-polar transformation process
Jor scale, translation, and rotation invariance. The log-polar output data is then
reduced into a manageable feature vector size by selecting bins near a predetermined
set of 2D Gaussian-shaped centers called localized receptors. Not only is the output
vector invariant fo size, translation, and rotation; but, it is also intolerant to small
deformations that are due to rotations in depth.

The next three subsections explain key functions that deal with preprocessing and feature
extraction for FLIR-based background suppression. Section 3.1.1.1 describes the role
and significance on using a robust blob detector such as the spoke filter. The spoke
filter algorithm was taken from previous Rockwell work and tuned for this application.



Sections 3.1.1.2 and 3.1.1.3 define log-polar and coarse coding techniques, respectively.
An important example showing how the two functions can produce invariant feature
vectors in 2D:is shown in Figure 11 of Section 3.1.1.3.

The top level flow diagram of the preprocessing and feature extraction for the background
suppression algorithm is shown in Figure 4. Note that the feature extraction box converts
likely target object areas into a set of invariant (50-point) feature vectors.

Edge Boundary
Detection g Detection
(Sobel)
* v vy /¢ Log-Polar Transformation
Spok Feature « Course Coding Conversion
FFi)lct)ere Extraction  Internal Object &
(2D Invariance) Background Clutter
Standard Deviation Ratio
# Calculation
Merging | | Output:
Algorithm {50-Point Feature Vectors}

Figure 4. The FLIR-based, background suppression algorithm rejects unwanted clutter
objects. The top level flow diagram shown here represents the preprocessing
and feature extraction portion of the algorithm.

3.1.1.1 Spoke Filtering Techniques

The spoke filter (developed by Minor and Sklansky in [MS81]) is an extension of the
Hough transform for ellipses. The approach assumes that the targets are "blob-like" in na-
ture with distinguishable boundaries not varying wildly from a convex-shaped silhouette.
With this assumption, most of the edge segments composing the object-to-background
boundary are directed towards the object’s geometric centroid. It is a robust and fast
approach that researchers are now using in such diverse areas as intelligent vehicle tech-
nology, where lane markings are detected in real-time (see Haga et al. in [HSK95]).

In this application, the spoke filter converts a narrow or wide Field-Of-View (FOV) FLIR
image into a group of silhouettes of candidate targets (or a set of coordinates describing
a box that fits around the output silhouette). The algorithm quantizes angle information




from a Sobel edge detector into eight directions as it searches for edges at each angle
(the action is analogous to going around a hub of a wheel and examining the spokes).!

Figure 5 demonstrates, by example, how spoke filtering is done. Figure 5(a) shows an
ideal target to background situation (white circle on a black background). In Figure 5(b),
eight rays emanate from the center point of the circle. The rays correspond to the eight
quantized angles starting from the horizontal going clockwise. Angles are mapped to the
Freeman chain code in the order listed in Table 1. Quantized angles from the ideal target
in Figure 5(a) are the smaller, clockwise arrows in 5(b) (as a side note, Figure 5(c) shows
the case for the negative image of (a) with small arrows going in a counterclockwise
direction). The spoke filter sums the number of different angles produced by the Sobel
output for each "spoke'". The algorithm stores the sum in an eight-bit "register'. In this
example, all eight spokes have a representation of three arrows (length of the spoke is
equal to three). The output would be a 2D histogram, comprised of eight-bit registers,
where the center bin contains the maximum value of eight. The center bin corresponds
to the filter’s detection of the ideal target. The key point to remember is that one is
checking for consistency with a mask similar to Figure 5(b) or (¢) on the quantized angle
image. Consistency in this context is defined as finding spokes with edge elements (small
arrows) aligning themselves in the manner of Figure 5(b) or (c).

(a) (b (©)

Figure 5. Spoke Filter Directions: (a) positive target, (b) edge output for target brighter than
background, and (c) edge output for target darker than background.

When edge elements are aligned, the algorithm sets the ith bit, corresponding to its
respective quantized angle and chain code. Going back to the example of Figure 5,
Figure 6 displays the three register values for the upper right quadrant (spokes 6, 7,
and 0). Each group of small arrows from the center point will be counted as setting
the appropriate bit to one (where the user designates the length and distance; see the
following paragraph). In the example, the 90° spoke will set bit 6 to one, followed by
the 45° spoke setting bit 7 to one, efc.

' It should be noted that 90° is added to every element of the Sobel output. Thus, the vector image (Sobel) output
is rotated by 90° in a counterclockwise direction. Since the gradient points in the direction of steepest descent,
this operation makes each element point in the direction where the intensity to the right of the element is greater
than its left. The net effect from all this, is to make the edge elements associated with the blob to align themselves
tangentially with respect to its boundary.




Table 1. The spoke filter uses Freeman chain coding in designating its quantized angles.

Quantized Angle | Chain Code
(Degrees) Numbers
0 0
-45 1
-90 2
-135 3
180 4
135 5
90 6
45 7

The length of the edge elements and distance from the point in question determine the
approximate target size the algorithm will detect. Length, L, and distance, S, from a
point (z,y) are measured in pixel widths. In Figure 6, spokes 6 and O have L = 3
and S = 1. The intermediate directions (spokes 1, 3, 5, and 7) are measured in pixel-
diagonals (see Minor and Sklansky in [MS81]). The directions are related to L and S by

L= [TLE + -%_l and § = {% - %J, where, |_aJ is the largest integer that is not greater
than a. Therefore, for spoke 7, L = 3 and S = 0.

Other spoke filter details on how it takes care of intersecting blob segments and aggregates
blob centroids for improved detection are explained in Minor and Sklansky’s paper (in
[MS81]). Figure 7 is an example depicting the spoke filter’s masking capability. Here it
detects circular and elliptical blobs while ignoring line-like clutter.

Once detected areas are found by the spoke filter, additional software is required to
(1) label and merge blobs, (2) perform region growing on suspected image areas, and (3)
find object boundaries (these functions are included in the merging and boundary detection
boxes of Figure 4). The FLIR-based, background suppression algorithm contains vanilla

76543210
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Figure 6. Test example of Figure 5 showing bit setting for spokes 6, 7, 0.
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Filter - -
Test Image Test Image Output

(Binary image)

Figure 7. The test image is composed of circular and elliptical blobs with straight lines of varying
widths. The spoke filter detects only the corresponding target-like objects.

algorithms to perform merging, region growing, and boundary detecting tasks. One can
spend a lot of time implementing exotic algorithms that can improve the capability of
these functions, but the emphasis for this contract was placed in implementing innovative
feature extraction and classification methods.

Figure 8 shows an example case, at different preprocessng stages of the top level flow
diagram in Figure 4, for a FLIR image from the Fort Carson database (see reference
[BHPHY94]). Figure 8(a) is a contrast enhanced FLIR image of an M113-109, Armored
Personnel Carrier (APC). The vehicle is in the front-end position at approximately 110
meters distance. In Figure 8(b), the spoke filter output is displayed for a radius of L = 10
and S = 1. Only 5% of the gradient elements from the Sobel operator having moduli
greater or equal to the noise threshold T' are used in the detection process. The spoke
filter detects over 20 likely areas; shown as white blobs in Figure 8(b). Figure 8(c)
gives the blob outputs (after merging and segmentation) that contain the boundaries. The
segmented output blobs show irregular shapes for most of the clutter objects (which is
typical). In Figure 8(d), boundary boxes from the detected objects in Figure8(c) are
superimposed on the contrast enhanced original.

In summary, by embedding the preprocessing software with a spoke filter, the FLIR-based,
background suppression algorithm can take further advantage of the natural segmentation
properties in FLIR imagery.

3.1.1.2 Log-Polar Transformation

After image preprocessing and spoke filtering on the object boundaries, the background
suppression algorithm now transforms them from binary subregions into log-polar points.
The goal, as explained in the next section, is a feature vector that is composed of a
compact or “coarse coded” representation of the log-polar output and the background
to object (intensity) standard deviation. Figure 9 pictorially describes the process for a
simple tank boundary.




(a) Original (After Contrast Enhancement) (b) Spoke Filter Qutput

(c) Blob (Boundary) Detected Output (From Spoke Filter)  (d) Detected Objects (Boxes) Over Original

Figure 8. Figure 8(a) shows the contrast enhanced FLIR image (note that the algorithm operated on the
original) from the Fort Carson database (see reference [BHPHY94]). The image shows an APC
(M113-901) in a front-end position at approximately 110 meters away. Figure 8(b) depicts the
binary output (over 20 “white” blobs) from the spoke filter. In Figure 8(c), another binary image
displaying the resultant blobs (containing the boundaries) after merging and segmentation.
Finally, Figure 8(d) overlays the object boxes found in (c) on to the contrast enhanced original.

In the literature (see the work by Waxman’s group at MIT-Lincoln Laboratory in
[WSBF93], [WS92], and [BW91])?, one can transform image points to complex polar
space by the following.

For image point (z;,v;), a (p,8) space representation is computed by finding the
cluster centroid of a set of boundary points, (z.,y.). Therefore, its form in (p, 8)
space is Z = pe'?; where, p is defined as the distance of the image point from the
cluster centroid,

p= \/(mz - xc)z + (yi — yc)z 3

2 In these references, only high valued curvature points are selected for feature extraction. Here, for more sensitivity,
all the boundary points are used in the process.
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Figure 9. As shown in the above diagram for the simple tank boundary, log-polar transformation
combined with coarse coding can produce an invariant feature vector in two dimensions
(see Figure 11 for a more detailed description on the process).

and, 6 is its angle,

Next, a mapping,
In(Z)=1In(p)+10,

is applied to the representation. This conformal operation transforms both scaling
and rotational changes into translations in (In(p),8) space. For example, if
the boundary points are rotated by angle 6, with respect to its group centroid,
then in(Z) = In(p) +i(6 +6,). In like manner, for a scale factor m, then
In(mZ) = (In(p)+In(m)) + 16. After transforming boundary points, one
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computes a second cluster centroid of the transformed points. But there is a problem
with the second centroid. A simple averaging in the §-direction will not produce the
required centroid. The difficulty is with the 2x periodicity. One solution mentioned
by Waxman is to map the feature points onto a complex unit circle (cos 8, sin 6);
where 6 is the same as before. Now the centroid of these points is computed (which
will lie outside the complex unit circle): (C,S) such that

_ 1 &

==Y cost;

C ni_lcos
and

I [

S:;&—-_Elsmé?,-.

An effective second centroid, therefore, would be to shift feature points by

tan 1 <£> .
C

This operation is performed on the rotated tank boundary for the “log-polar output
row in the illustrative example of Figure 11.3 The final centroid operation makes
the log-polar process for boundaries invariant to scaling, rotational, and translational
effects in two dimensional image space.

k]

The next step is to compress the pattern in log-polar space into a finite number of feature
vector elements as discussed in the next section. The approach follows the method
developed by Waxman et al. in references [WSBF93], [WS92], and [BW91].

3.1.1.3 Coarse Coding Techniques in Two Dimensions

Coarse coding techniques are used in the neural net community to provide a compact
but effective representation for multidimensional data (see Rumelhart and McClelland
in [RM86] for a detailed explanation).* In this application, overlaying receptive fields,
similar to those shown in Figure 10, are applied to the transformed boundary images.
Each field is activated inversely to the Gaussian-weighted distance from its center to
the closest point. Because the fields overlap, the algorithm has the capability to tolerate
small deviations. The output becomes a condensed version of the transformed boundary
image. It is invariant to image size, translation, rotation, and some deformation (due to
receptors overlapping).

Figure 11 demonstrates the procedure for the simple tank mentioned in Figure 9. In
the first row, the tank boundary is expanded to twice its size, rotated by 45° in a
counterclockwise direction, and slightly deformed as shown. The second row displays the
log-polar operation as described in Section 3.1.1.2. Row three gives the output after the
centroid is shifted to the center of the log-polar plot. Note that the second centroid shift,

* But it should be noted that for symmetric boundaries (e.g., a square or hexagon), no unique centroid is possible.
* Provided, according to Hinton on page 93 in [RM86], the data is sparse. The approach here assumes that taking full
boundaries for higher sensitivity rather than selected high curvature points is adequate.
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Figure 10. Circular receptive fields are applied to the transformed binary image. Figure 10(a) gives
the layout of the receptive fields (for the FLIR-based, background suppression algorithm,
it’s (7 x 7)), while Figure 10(b) shows how they operate for a given pattern.

tan~! (-g,—), for symmetric boundaries with respect to the y-axis gives 90°. Therefore
in practice, one can shift with respect to the 90° point as shown in rows two and three.
Coarse coded receptors in the fourth row of Figure 11 indicate the strength of the closest
boundary point to its center; where a value close to one represents a filled-in circle while
responses near zero are shown by smaller diameters (zero responses are pictured as circle
outlines). There is a slight point variation from the ideal in the log-polar plots. The
discrepancy is due to the quantization process in the computer simulation. The deformed
boundary example (column 4 in Figure 11) can be classified as a target or clutter since
it contains some, but not all, attributes of the original. Depending on the application, the
deformed boundary may even be indicative of certain types of clutter.

Let

o

F=|:

fa9
be the 50-element background suppression feature vector. The first 49 components are
reserved for the overlapping receptor outputs. Define fy to be the value for top left
receptor output. Feature elements, fi,..., fss, correspond to receptor fields going from
left to right and top to bottom.

In order to take advantage of the obvious segmentation capability between hot/cold objects
and their background in FLIR imagery, the 50" feature element, or f49, contains a
measure of this sensitivity. That is,

To
;

fa9 = —
b

where, o, is the object (intensity) standard deviation and oy is the background (intensity)
standard deviation from a (16 x 224) pixel strip near a border of the (256 x 256) FLIR
image.
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Figure 11. For the simple tank example (top left), columns 2 and 3 show 2D invariance in
translation and rotation (point variation is due to quantization in the binary images and in
the log-polar plotting process). Small amounts of deformation in the fourth column
produce a similar coarse coded output to the original tank boundary. Depending on
the model-based library and application, the back-end classifier may designate the
deformed boundary example as a representative from the original class, another target
model, or clutter. Also, note the arrows for the expanded and rotated boundaries
(columns 2 and 3 of row 2). They show their corresponding movement from the second

centroid (i.e., tan™! (-g—) see Section 3.1.1.2) of the original tank boundary.

To continue with the FLIR-based, background suppression algorithm, the reader should
go to Sections 3.2 and 3.2.1 for a discussion on the back-end classifier. For performance
results, see Section 4.1. In the next section, a 3D LADAR-based, feature extraction
approach is presented.

3.1.2 3D LADAR-Based, Feature Extraction in Background Suppression

During the first half of 1994, work began on a 3D LADAR-based, background suppression
algorithm that culminated with a lab demonstration on a SUN workstation for Demo B (at
Lockheed Martin, Denver on June 28 and 30, 1994). The lab demo showed a new method
to suppress background clutter by implementing the feature extraction/classification
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paradigm mentioned in the beginning of Section 3. In the work, LADAR range
imagery’ was used to classify targets from non-targets (or clutter) with good results (see
LADAR-based background suppression results in Section 4.1.2). The idea demonstrated
was that clutter suppression can be accomplished by identifying target or clutter objects
with a trained classifier. Such a system incorporated the observation that natural clutter
structures have, on average, smaller area planes with their normals scattered over a wider
orientation range than man-made objects.®

The LADAR-based, background suppression algorithm compared sensed data to the
predicted target signature and background clutter. This task is implemented by converting
the range imagery of unknown objects to 3D plane primitives for transformation into a 3D
histogram. The histogram for an unknown object was then converted to a feature vector
through coarse coding techniques. The process is similar to what was described in the
2D log-polar and coarse coding sections (Sections 3.1.1.2 and 3.1.1.3, respectively). The
technique for 3D histogram generation is based on work by Krishnapuram and Casasent
(in reference [KC89]) for their 3D Hough transform. What is done here is to generate
3D Hough transforms for unknown objects. In an analogous manner to Sections 3.1.1.2
and 3.1.1.3, one uses 3D Hough space to generate feature vectors. The process by which
feature vectors are produced is by overlaying receptors in 3D over Hough transform
space (which is shown pictorially in Figure 12).

To be more specific (and in following Krishnapuram and Casasent’s development in
reference [KC89]), assume a set of unit vectors of the form

U, = api+ buj+ enk

in 3D image space; where,

vai+b:+ct=1.

Given the above definition, one can define the 3D Hough transform for a typical vector
r as

p=r-u_.
Note that n and p are the parameters that describe direction in 3D and distance,
respectively. In order to practically implement the approach, the number of values for p

and unit vectors for u_ are limited to a finite amount. Now for plane detection, let the
LADAR range image be defined as

I(z,y) =z;

5 The imagery consisted of seven objects, 35 target and 35 clutter, that were selected manually from the LADAR
image set of the Fort Carson database (see reference [BHPHY94]).

¢ There are many instances where it is easier to separate natural and man-made objects. For example, in this domain,
military vehicles tend to have higher valued bins grouped together; while certain natural objects such as trees have
smaller valued bins randomly scattered throughout the histogram. The random orientation of planes in the trees is
due to the LADAR sensor picking up gaps between branches thereby limiting the build-up of large planar surfaces
that are characteristic of many man-made objects.
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Figure 12. The LADAR-based, feature extraction process takes advantage of range map information in
order to build a representative feature vector. In this figure, an object in a LADAR
image is converted to a list of object planes of a normal unit vector and 3D location
on its way to a 3D Hough transform representation (not shown). As explained in
Section 3.1.2, an object’s 3D Hough representation is the basis for an analogous coarse
coding technique that was done in 2D to arrive at a background feature vector.

where, z is the intensity for each (z,y) pixel. Assume a plane P in 3D space. For each
pixel point (z,y) in the image, one can construct a vector,

r==zi+yj+zk.

All vectors r (that are points on the plane P), with a unit vector u_ perpendicular to P,
produce the same values for p = r-u,. Therefore, all points on plane P will vote for the
same point (n, p) in 3D Hough transform space. This action will generate a peak in the
space. The conclusion that is reached by constructing such a space for an object is that
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if one locates the peaks in 3D Hough space, then a description of the orientations and
sizes of the planes for that object are found.” Krishnapuram and Casasent (in reference
[KC89]) go on from this point to give details on how one should go about implementing
the 3D Hough transform in practice for 3D object location and recognition.

But in this work, the intent was to obtain a feature vector that is representative of its
underlying plane structure. As in the 2D case (of Section 3.1.1.3), overlaying receptive
fields are applied to the 3D Hough space for characterization. Each field is activated
inversely to the Gaussian-weighted distance from its center to the closest point. Figure 12
shows how the fields overlay in 3D Hough space. Therefore, the object’s representation
in 3D Hough space (not shown in Figure 12) would be in the form of peaks due to
the number of planes voting for that particular bin. The peaks that are the closest to a
receptor would stimulate it in an inverse way to the distance from its center. The net
effect would be a feature vector that is a characterization of an object’s plane information.
The top level process is summarized and shown in Figure 12. The experience gained
with this technique shows that internal target structure adds to robustness of the overall
background suppression algorithm when compared to using only target silhouette (or
boundary) information.

To continue with the LADAR-based, background suppression algorithm, the reader should
go to Section 3.2.2 for the back-end classification algorithms and Section 4.1.2 for the
results obtained with the overall algorithm suite. In the next section, the proposed,
FLIR/LADAR ATD/I is introduced.

3.1.3 Proposed Feature Extraction in Enhanced, FLIR/LADAR ATD/I
System

The approach taken for this contract was to develop a state of the art ATD/I system
by building on the foundation of the feature extraction/classification paradigm. This
system would have employed the 2D and 3D feature extraction techniques described in
Sections 3.1.1 and 3.1.2, respectively. But as discussed in Section 2.1, this objective was
not achieved due to program funding restrictions. Despite the setback, careful thought
was given during the coarse of the contract on the nature of such a target identification
system. For the overall system, two key ideas emerged: (1) to embed the system with
a hierarchical classification algorithm that is similar to what is described in Section
3.2 and (2) to blend new and unexpected visual experiences (from targets) on the fly
after sufficient training with a CAD model set. The enhanced ATD/I system would
be capable in deciding between targets that have “distinctive features” (e.g., such as a
longer gun barrel). It would decide through evidence accumulation which target class
best fits the new image features that are encountered. The network would not only
identify unknown targets from "snapshots' (sustained views from targets), but also from
aspect sequences in the input FLIR/LADAR data stream. Both static and dynamic target
identification situations would be enhanced because neighboring aspect views assist in the
total recognition process. These ideas are summarized and partitioned into two segments:
preprocessing/feature extraction (this section) and target identification (in Section 3.2.3).

7 The object description would have n giving the plane orientation, p its perpendicular distance from the origin, and
the height of the peak being proportional to the number of points in each plane.
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Figure 13. The proposed preprocessing and feature extraction approach for the enhanced,
FLIR/LADAR ATD/I system fuses FLIR and LADAR data on a feature
level. See Figure 23 for the overall system diagram.

Figure 13 shows a flow diagram of the preprocessing and feature extraction portion
of the proposed FLIR/LADAR ATD/I system. In the diagram, FLIR and LADAR
intensity imagery are fed into the target prescreening modules. These modules will
be spoke filter units. The idea here is to take advantage of the blob-like nature of
many tactical targets. After detecting the object boundary, feature extraction processing
in two dimensions is performed. The techniques used would be similar to what was
described in Sections 3.1.1.2 and 3.1.1.3. Fusing the two boundaries is envisioned in the
feature-level registration box of Figure 13. Matching can be done by using minimum
mean square error or hierarchical classification techniques.® After matching, the system

® In the hierarchical classification case, the system would employ the general method of the learning system introduced
in Section 3.2; i.e., searching for the best match by comparing boundaries down a tree structure in feature space.
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performs a blending operation of the feature elements; where, the percentages may be a
function of the application and environment. Because the LADAR intensity image and
range map are by definition co-registered, the corresponding 3D range image can
be processed with the Hough-based, feature extraction techniques of Section 3.1.2.
One can then say both boundary and internal data are processed by this method.
The boundary information will be in the form of a n-element feature vector from the
fused FLIR/LADAR intensity imagery. The internal data will be a m-element vector
stemming from the plane information found in the LADAR range map. The feature
vector consolidation box, in Figure 13, would just append the two inputs.

This new ATD/I approach would have the capability to robustly fuse two different
complimentary inputs. Registration on a feature level would be accomplished quickly
and effectively.

For further description on the enhanced system, see the target identification summary in
Section 3.2.3.

3.2 Classification: The Hierarchical Approach

Classification theory is the study of the ways to categorize data. It is an attempt to mimic
what human beings do: generalize and abstract from specific examples, discriminate
similar patterns by some measure of performance, and store/recall information.

Hierarchical classification, in particular, incorporates a graded structure to accomplish
categorization. There are advantages to framing classification in such a structure. Re-
searchers such as Jose Ambros-Ingerson, Richard Granger, and Gary Lynch (in [AIGL90])
have stated that human subjects in perceptual studies robustly recognize objects first
as categorical levels and subsequently at successively subordinate levels. They further
state that such studies suggest a presence of structured memories that are organized and
searched hierarchically during recognition.

The rationale behind a hierarchical approach can be summarized in the following state-
ment.

The brain processes information by using a principle of contrast; that is, suppressing
information that does not change and enhancing parts that do. One implementation
of this idea is to cast the operation in terms of differences. Construct an algorithm
that maneuvers through a tree structure as it finds the correct classification. It will
navigate down the tree by subtracting the residual portion of the unknown vector by
checking the current cluster centroid (or prototype) vector in deciding what path the
algorithm should take.

Figure 14 describes what is intended in combining hierarchical classification system in
a background clutter suppression context.
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Figure 14. One approach in a classification hierarchical system would be to subtract the current
feature vector with cluster prototypes as the algorithm maneuvers through weight space.
The goal above is to correctly identify the M60 tank through differericing.

As mentioned in the beginning of Section 3, the feature extraction/classification paradigm
was selected to be the foundation upon, which ATD/I work would be done for the
contract. In a manner similar to Section 2.1, Section 3.2 will describe how hierarchical
classification was applied in this program. Sections 3.2.1 and 3.2.3 describe background
suppression and the enhanced ATD/I system algorithmic implementation, respectively.
In the background suppression section, emphasis is placed on the 1995 FLIR-based
development. The ATD/I system section contains a discussion on how the transform-
based feature extraction and hierarchical adaptive differencing would have worked.

Hierarchical classification was performed on both FLIR-based and LADAR-based clutter
suppression. The objective was to prune off obvious clutter objects from target candidate
lists. These lists would in turn be used as input to target identification algorithms.

3.2.1 Classification in FLIR-Based Background Suppression

The objective with FLIR-based background suppression is to classify target versus clutter
objects after spoke-based preprocessing and feature extraction have been performed on
the selected subregions of the input image (see Section 3.1.1). To push the state of the art
in FLIR target detection/clutter suppression a hierarchical approach was tried and tested.
In the FLIR-based version, a hierarchical clustering algorithm (with the kernel based on
Carpenter and Grossberg’s ART 2-A neural net in [CGR91]) classifies unknown objects
into background clutter or targets after training on a representative set of feature vectors.
Figure 15 adds the classification portion to the diagram shown in Figure 4.
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Figure 15. The top level flow diagram of the FLIR-based, background suppression algorithm
now is completed with the hierarchical classification module.

3.2.1.1 ART 2-A

The kernel algorithm for the hierarchical classification module is the ART 2-A neural
network. The ART 2-A system (see [CGR91]) is a fast algorithmic form of Carpen-
ter/Grossberg’s ART 2 neural network that was developed primarily for analog input
patterns (see [CG87]). It is an unsupervised neural network that generates output clus-
ters that are especially suited for the purpose proposed in this work. It also handles large
databases (unlike many other neural network paradigms).

The following paragraphs are an explanation of the step-by-step description of the
algorithm in Figure 16. It is a composition of references [CGR91}], [TG94], and
[FKMHH92].

Embedded Neural Network: ART 2-A. From Figure 16, there are two active
layers in the network: F) and F,. The Fj layer is a preprocessing module that
performs noise suppression and contrast enhancement on the feature vectors. Define
an M-element input vector, I°. Let I be the output from the F}j layer. The F)
layer processes the I° vector by

0
=nfonl ;

where,  normalizes any vector to its unit vector and f, removes vector elements
below the threshold, € (see Step 2 of Figure 16).
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1. Intialize:

0<p" <1,
Lj = false,

and,
0<pB<L

(Note, for 3 = 0, the network always se-

lects the winning weight vector, z‘}(”ew);

see Step 7.)

. Transform the input pattern from Fy to F}
such that, for I = (Io,...,Ip—1),

1]
I=nfenl ;

where,

szw,

(f@x)i: {.TZ' if.’li>0

0 otherwise

(fort =0,...,M — 1), and

. Activate F; by the following:

M-1
a Yy I if £; = false
Iﬁj - =0

)

M~—1

Y Lizy;  if Ly =true
t=0

where, the constant o must be:

a<

-

4. Choose the best matching category:

Ty =max{Tl;:5=0,...,N - 1}.

(Note, if two or more nodes are the same
value, then choose one at random.)

5. Test for vigilance:

if (L7 =true and Ty > p*)
OR
if (LJ = false)

THEN goto Step 7.

6. Reset node J to index of arbitrary uncom-

mitted node (remember that all uncommit-
ted nodes have LJ = false).

7. Adapt weights for winning F, node:

z-(new) _

I if L7 = false
" =

n(Bn® + (1= 8)23@D) if L5 = true ’

where, for z = 0,...,M — 1,

v, = {11- if 220 > g
0 otherwise

(with z;("ld) being the value for z*J("e“’) at
the beginning of the input presentation).
Adjust the J** F, node status:

if (LJ= false)
THEN (LJ = true).

. Goto Step 2.

Figure 16. The ART 2-A neural network drives the differencing technique employed by
the FLIR-based, background suppression algorithm.




In the N-node layer, F}, the best matching category is obtained by finding the
maximum value for the set of activation parameters. If zj, such that

*
_ * * *
Zj = <Zj0,2]‘1,...,zj(M_1)> ,

represents the weight (or cluster prototype) vector for node j,” then Tj is the
activation value with T; being the maximum value as shown in Step 4 (of Figure
16). This result is seen from Step 3, where the F, layer computes

for a committed node and

M-1
T; = o Z I;
1=0

for an uncommitted one.!°

If p* denotes the vigilance of the ART 2-A network,!! 2% the weight vector for
node J, and 3 the learning rate, then only winning node J will have its weights
changed. Therefore, if T; > p*, then according to Step 7,

z=f](new) =n (5,7\1; +(1-5) z;(old));

otherwise, the network allocates a new node I with

Here, the vector W is the union of the current input and weight vectors (as shown
in Step 7) with z;("ld) defined as the value for z*{"**) at the beginning of the
input presentation. It should be noted, that the system through the learning law
automatically generates new F nodes (or cluster prototypes) when necessary.

It is the ART 2-A neural network that drives the FLIR-based, background suppression

algorithm into pruning background clutter from the target candidate list. Now the task is

to come up with a scheme for embedding the neural network in a differencing structure.

9 Asterisks for the weight vector and the vigilance parameter (defined in the next paragraph) relate to ART 2 terms
found in [CGR91). It is not necessary for understanding the algorithm; e.g., references [TG94], and [FKMHH92]

do not have them.

10 An F, node where learning has gone on before is defined as a “committed” node; otherwise, it is considered to be

“uncommitted” (with no prior leamning taken place).

' A vigilance value near one makes the network very selective, while a number close to zero produces a network with

little discrimination between classes.
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3.2.1.2 Maneuvering Through Feature Space

This section describes the method used to embed the ART 2-A algorithm in a hierarchical
control structure for classifying targets and clutter. The intent was to form the foundation
for the recognition engine on the enhanced, ATD/I system by developing and testing the
hierarchical technique on the FLIR-based, background suppression algorithm. The goal
is to prune off obvious clutter objects from the target candidate list. The important new
part to the overall classification algorithm implemented here is to incorporate differencing
techniques where the residual portions of the input feature vector are subtracted by the
current cluster prototype (i.e., z;) chosen by the system. The procedure that follows is
motivated by the work of Ambros-Ingerson, Granger, and Lynch at the Center for the
Neurobiology of Learning and Memory, University of California - Irvine (see [AIGL90]).
In addition, the approach has some similarities with Borsi et al. at the University of
Hannover; where, the application is to recognize faults in high-voltage systems (in
[BGWO95]). Borsi cascaded ART 2-A networks for hierarchical clustering, but he didn’t
employ a differencing scheme.

The hierarchical classification algorithm is explained in two phases: training and test.
In a manner similar to the ART 2-A algorithm section (in 3.2.1.1), the training and test
parts are depicted with (1) a concise algorithm listing and (2) a brief commentary on the
step-by-step description. To elucidate the method even more, an illustrative example is
included with the commentary.

Hierarchical Classification: Training Phase. As shown in the listing of Figure 17
and the illustrative example in Figure 18, a tree structure is created for the set of

input feature vectors, <F . F.,...,F, ,, .. ¢; where, N is the total number of
P 00t (Ne—1) k

feature vectors to be trained during this session.!? The algorithm processes the

feature vector database serially as instructed by Step 1 of Figure 17. In Step 2, the
algorithm sets Level [ to zero and stores the input feature vector into the current
residual (feature vector) array, F(kl).

After initialization, the program learns the input feature vector via the ART 2-A
neural net (see Step 3). Learning may take several passes with the current residual
feature vector set that is associated with the particular node in question.!* From
Step 3, the vigilance parameter, p*, is the same for each Level [ down the tree; but,
it can be made to vary.!* The training process per node and Level [ is symbolically
depicted in Figure 18 with the appropriate label and arrows shown on the right side
of the diagram.

12 Eor Demo C and the ICD version delivered to Lockheed Martin, Nx would correspond to the number of detections
found per (256 x 256) FLIR image.

13 In the training software that generated the tree structures for the Demo C and ICD background suppression programs,
three passes from the residual vectors in the same order that established the node was enough for stabilization.

" For example, depending on sensitivity to discover certain secondary structure for an input database, p*, can be
different for every node and level on the tree. In the training software that generated the tree structure for the ICD
version, three different vigilance values were used for “mixed clusters™: p* = 0.85 for Level 0, p* = 0.99 for
clusters composed of two residual vectors, and p* = 0.77 for all the rest.
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Next, from Step 4, the winning cluster prototype, z}‘(l) , for node index J is identified
after the ART 2-A training process on Level I. Step 5 is a logic statement that
describes the algorithm’s action after training. If winning node J is the same class
as the feature vector, the algorithm is finished with it (i.e., F, has influenced the
system by having the winning clusters down its path through the tree adapt to its
features). The program then returns to Step 1 for feature vector, F, ;. If there is
a misassociation in classes or the node is considered “mixed”,!® then the algorithm
computes the residual feature vector for the next level (in Step 6).

Step 6 performs a subtraction and absolute value operation between the residual

feature vector, F(kl), and the winning cluster prototype, zj(l), on level [ such that,

Fl+) = }ng ey i

The main reason for the absolute value operation is due to an ART 2-A requirement.
The neural network must have all of its (input vector) elements be greater or equal
to zero. There’s no harm by taking the absolute value since the algorithm is still
“masking” out characteristics by differencing. Indeed, in reference [AIGL90], a
more generalized version of their algorithm replaces the subtraction operation with
a “masking” term.

Steps 7 and 8 make it possible for the algorithm to create a tree structure by
incrementing [ as it goes back to Step 3 for more training through the ART 2-A
neural network.

Once all the feature vectors are processed by the training algorithm listed in
Figure 17, a tree structure is created that may look similar to what is shown in
Figure 18.

Several observations concerning the ART 2-A embedded, hierarchical training process
can now be made.

1. All training vectors have a final (non-mixed) node that represents their class. In
other words, 100% correct classification is achieved during training.

2. Classification generalization of the neural network increases as one decreases the
vigilance parameter, p*. This capability is based on the definition and purpose of
vigilance in the ART 2 and ART 2-A networks. For a more detailed explanation,
see references [CG87] and [CGRI1].

3. The algorithm has the potential of identifying hierarchical structure in the training
database (see [AIGL90]).

15 A cluster is considered “mixed” when it represents vectors from both classes.

25




1.

Do Steps 2 - 8 for each input feature vector,
F., k=0,1,...,(Nt — 1); where, Ny is
the total number of feature vectors to be
trained.

5. If the cluster associated with z}(l) is the

same class as F, goro Step 1 (the algo-
rithm is finished with the current feature
vector); otherwise, if it hasn’t already been

so designated, label the cluster as “mixed”.

Level | = ) = F . .
Set Level [ = 0 and F), Fy (Obviously, a cluster is considered “mixed”

when it represents vectors from both

. Train vector F(kl) with the ART 2-A network classes.)

preset at a vigilance of p*.

(Note, to adequately train with the ART 2-A 6. Compute the residual feature vector,

network, it may necessitate running the
residual training vector set, from the win-
ning cluster, J, on Level [, through several
times until its category structure stabilizes.)

F(IIcH) — ‘FEC’) - z}(l)‘_

7. Setl =1+ 1.
Identify winning cluster prototype, z}(l);

where, J is the winning node index. 8. Goto Step 3.

Figure 17. The control structure for the FLIR-based, background suppression algorithm is created
during the training phase by adapting a differencing paradigm.

Feature Vectors

Training Phase

{Foa F}a see g I?Nk'“}

Level 0— ;
Training A
Level 1—
Level 2—
Level 3—
Training
Level 4 — l;
Training A
Level 5— I

Figure 18. A typical tree structure may look like the above diagram. Maneuverability is accomplished
by differencing the residual feature vector for a particular Level I, F\'), with the winning
cluster prototype, z}('). During training, all features are correctly classified by the system.
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Hierarchical Classification: Test Phase. Once the training phase is completed,
testing on an unknown set of vectors can be undertaken. Figure 19 describes the
steps during this test process. As before, an example tree structure in Figure 20
will aid in the explanation of the algorithm.

Steps 1 and 2 in Figure 19 are similar to Figure 17. Thus, for a typical sensed (or
unknown) feature vector, Fs , the algorithm sets the index Level [ to zero and stores

the input feature vector into the current residual array, F(SI).

In Step 3, the ART 2-A network “processes through” with F(sl) by computing the
maximum activation value, Ty, for a particular node at Level /. The maximum
activation value, as defined in the previous section (see 3.2.1.1), is the best matching
category found by the ART 2-A algorithm. Therefore, for node J and level [, the
algorithm would find, T(I), such that

Tﬁl):max{T](l) 1J :0,1,...,]\7(1)—1}.

Just as in the training version, Step 4 identifies (from Ty)) the winning cluster
*(1)
prototype vector, z; .

Step 5 is a logic statement to determine whether the prototype cluster is mixed. A
cluster denoted as totally composed of target or clutter feature vectors will make
the algorithm to go to Step 9 for classification. A mixed cluster, on the other hand,
sends it to the next step (Step 6) to compute, F(i'H). As shown in Figure 19, Step 7
increments /; while, Step 8 instructs the algorithm to return to Step 3 for the next
set of T;’s in ART 2-A at the next level.

In Step 9, classification is performed by associating the cluster type with the residual
feature vector, Fg) , at the final node destination.

Step 10 is a branching statement that sends the algorithm back to Step 1 for the
next input feature vector.

In Figure 20, for the test version of the algorithm, the sensed feature vector, F_,is
classified as a target vector on Level 5.

The following two comments can be stated from the above test version description of
the hierarchical classifier.

1. Processing a feature vector through the tree structure occurs quickly (the
algorithm maneuvers through the tree by computing the dot product:
TJ-(I) = F(;) -z*.(l)). There’s no time wasted in waiting for nodes to settle (as
in the training algorithm).

2. The tree structure can “adapt” to new data by going back to a training mode to
incorporate new training vectors (this capability was not added here; but can be
an impetus for future work).

See Section 4.1.1 for performance results with the Demo C and ICD versions of the
FLIR-based, background suppression algorithm.
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1. Do Steps 2 - 10 for sensed feature vector,
F..

S

=F.

S

. Set Level [ = 0 and F(SZ)

Process vector F(sl) through the ART 2-A
network.

Identify winning cluster prototype, zj(l).

If prototype cluster is not “mixed”,
goto Step 9.

Obtain residual feature vector,

F(H—l) —

) < B0 - 550
Set l =1+ 1.

Goto Step 3.

Classify feature vector, F,, according to the
class designation associated with winning

!
prototype vector, z}( ).

10. Goto Step 1 for the next sensed feature
vector; otherwise, Stop.

Figure 19. Once the tree structure is established after training, sensed feature vectors such as, F
be classified by the above algorithm. The method reduces the classification process to

associating vector, F_,

to the class of the nearest cluster or node in the tree.

Level 0—

Level 1—

Level 3—
Level 4 —
Level 5— Eiitar)

Sensed Feature Vector

Test Phase

\o

&

Figure 20. In this illustrative example, F,,

is processed through the tree structure. The

sensed feature vector is classified as a target vector at Level 5.
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3.2.2 Classification in LADAR-Based Background Suppression

Classification techniques that were used for Rockwell’s LADAR-based background sup-
pressor is rooted in supervised neural networks: specifically, Radial Basis Functions
(RBF’s). RBF’s are composed of a hidden (first) and output (second) layer. The hidden
layer is made up of basis functions that produce a localized response to a input stimulus.
Thus, they generate a nonzero response only when the input falls within a small localized
region of input space (see references by Hush and Horne in [HH93] and Musavi et al.
in [MACFH92] for lucid background material on radial basis functions). It is the same
fundamental idea that is behind the coarse coding technique described in Section 3.1.1.3.
Even though this approach is not part of the proposed ATD/I system (in the next section),
it is a powerful method for classification and functional approximation applications. !

The implementation used here follows Hush and Horne’s development in [HH93]. One

begins with a Gaussian kernel function

T
(x - Wl,j) (X - Wl,j)
20]2-

U,y = €XP | —

for j =1,2,..., N1; where, uy ; is the output of the jth node for the first network layer,
x is the input pattern from the 3D Hough approach in Section 3.1.2, w ; is the weight
vector for the center of the Gaussian for node j, O'JZ is the normalization variable, and
N is the number of nodes in the first layer. Next, the output layer is

for j = 1,2,---, No; where, y; is the output of the jth node, W, ; s the output weight
vector, and u, is the output vector from the first layer. In the classification mode, the
neural network places the Gaussian kernel in the center of the data while modifying the
circular decision boundary through training. The manner in which the decision boundaries
are changed is via the normalization parameter, 012». Once the clustering algorithm is
finished, a measure of the spread of the feature vectors is found for each node. The
technique used here is the same as in [HH93]. Thus,

1 T
= Y xmwyy) (x—wyy)

J xX€0,

where; ©; is the (training) feature vector cluster center w; ; and M; is the number of
feature vectors in ©;. In summary, learning is a two step process: parameters of the
basis functions are first determined by the above equation, then followed by training in
the output layer.

One can use many different learning algorithms for the two layers. Normally, learning in
the hidden layer is accomplished with an unsupervised method. The unsupervised method
is used mainly to generate clusters. In the background suppression implementation,

' Both RBF and ART 2-A based hierarchical classification (in Section 3.2.1.2) are fast algorithms, but the latter is
faster because it can cope with larger databases while fitting nicely within a global control structure proposed in the
enhanced ATD/I system of Section 3.2.3.
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a streamline ART 2 neural network [CG87] developed by Thomas Ryan at SAIC
[Rya88] called the Resonance Correlation Network (RCN) accomplished this task. The
RCN software came from existing Rockwell developed code. For the output layer, a
supervised learning algorithm is required. The Least Mean Squares (LMS) supervised
classifier (similar to Hush and Horne in [HH93]) was developed for the task. RBF-based
classification for background suppression is shown pictorially in Figures 21 and 22.

INPUT OUTPUT

O
» Clrs(igrer » Q Q

. Unsupervised
Feature Points Learning Clusters
(From LADAR Range Map) Algorithm

Figure 21. The LADAR-based, classification process implements a radial basis function neural
network. The approach is a two-stage process: unsupervised clustering followed
by supervised learning. In the above figure, the input feature vectors (processed
through a 3D Hough based operation explained in Section 3.1.2) are input to a
Resonance Correlation Network (RCN) for cluster generation.

The results using the radial basis function classifier with the 3D Hough feature extraction
algorithms explained in Section 3.1.2 are given in Section 4.1.2.

Natural Objects

Man-Made Targets >‘
Legend
Partitioned Space Circular
(Resulting From LMS Training) Decision
Boundaries

Figure 22. After clustering with the RCN neural network, the radial basis function approach generates
decision boundaries through training using a standard Least Mean Squares (LMS) supervised
learning algorithm. The goal is to separate man-made targets from natural objects.

30




3.2.3 Proposed Target Identification in Enhanced, FLIR/LADAR
ATD/1 System

In Section 3.1.3, the groundwork was established with an introductory description on
the preprocessing and feature extraction portion of the proposed ATD/I system. In
this section, the important, “back-end” target identification part will be discussed. To
reiterate, the new target identification approach is based on employing techniques from
lessons learned on the development of the FLIR-based and LADAR-based background
suppression algorithms.

From the flow diagram of Figure 13, Figure 23 incorporates two new subsystems that
pertain to the identification of targets: the on-line target recognition and off-line target
learning algorithm suites. Beginning with the target learning subsystem, an off-line
version of the aspect classifier that is similar to the background suppression recognition
engine is shown in Figure 23. It receives 3D target models, FLIR’LADAR clutter
models, and environmental information. The 3D target models are CAD prototypes
with a pre-determined number of facets (in this application, they need not be to highly
detailed; e.g., 100 to 400 facets may be adequate). Boundary and plane data are extracted
from the stored models in order to produce log-polar based feature vectors. In an
analogous manner, the clutter model database operates on known clutter objects (from
representative FLIR and LADAR imagery) according to the preprocessing and feature
extraction subsystem (boxed area in Figure 23). The training vectors create the tree
structure via the aspect classifier’s learning process. It generates a type of aspect graph
of the object viewpoints.!” Specifically, the output viewpoint vector from the unknown
object goes through a tree structure. The control mechanism of the algorithm manipulates
the input vector through the tree. The process searches node by node in order to find
the closest match between sensed and stored object representations. The manner in
which aspect classification and hierarchical differencing would be performed is through
the techniques of Section 3.2.!® In feature space, the vectors representing the different
targets may cluster according to similar object characteristics (e.g., the majority of tank
vectors may pass through turret clusters). The clusters are similar to what Waxman (in
[WSBF93]) calls generic maps or objects. By learning clutter objects, the aspect classifier
reduces the misclassification rate and increases overall system identification performance.
Certainly, one can also feed known sensed target data during training and test phases.
This capability is shown by the identified targets database in the off-line target learning
system of Figure 23.

Environmental conditions are introduced into the ATD/I system in the form of heuristic
rules. Environmental rules would modify the internal parameter settings in order to
conform to changing terrain, time-of-day, and weather conditions. One example of

'7 An aspect graph representation of an object is a 2D plot of the different aspect categories. One can think of the nodes
of the graph as depicting the object’s viewpoints where connected lines of the plot represent allowed transitions
between aspects.

'® As mentioned in the Section 3.2 on hierarchical classification for background suppression, the aspect classification
method is derived from the work done by Waxman and his co-workers at MIT Lincoln Laboratories (see references
[WSBF93], [WS92], and [BW91]). One clear difference between Rockwell’s method and the Lincoln Labs approach
is that the internal object points (representing 3D plane information) are added to the overall feature vector for
classification. In Waxman'’s approach, only boundary object points were used for recognition.

31



Preprocessing & Feature Extraction Subsystem
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Figure 23. The proposed target identification approach is composed of three subsystems:
preprocessing and feature extraction (described in Section 3.1.3), off-line
target learning, and on-line target recognition algorithm suites.
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such a rule could be to lower the vigilance parameter value in the ART 2-A networks
for improved (classification) generalization. This action may be necessary because of
decreased FLIR performance during the day; such as the time between 0900 to 1800
hours.

In the on-line target recognition subsystem, an overall feature vector originates from the
preprocessing and feature extraction algorithm suite of Section 3.1.3 (see Figure 23). As
mentioned in Section 3.1.3, the module appends 2D boundary and 3D internal data feature
vectors to produce a global representation. The appended feature vector is fed into the
(field phase) aspect classification module whose purpose is to classify the feature vectors
according to the different object viewpoints. This module has been trained off-line with
the most recent prototype, clutter, and identified target information. The new data is
passed to the field version of the aspect classifier via updated weights.

Finally, the evidence accumulation network in Figure 23, would integrate over time the
confidence values of the winning objects. The evidence network can be designed by
using the evidential reasoning (Dempster/Shafer) method or Waxman’s aspect network
(see [WSBF93]) technique. In the latter approach, the network builds evidence according
to permitted sequence of viewpoints during the training session. The aspect network
self-organizes, similar to humans, in its learning mode the different aspect transitions
of allowable target sequences. In the on-line mode, the process would build confidence
over time for the identified target. Whether staring or scanning, confidence in a particular
target would increase or decrease; but more importantly, the overall performance of the
ATD/I system would improve.

In summary, an extensive effort was expended for planning and the future development of
the enhanced ATD/I system. To maximize the effort and advance the state of the art on the
new approach, the work was closely tied to a feature extraction/classification paradigm.
This paradigm was applied first to the background suppression problem. Experience
gained and selected software produced by the background suppression effort was to be
carried over to the new ATD/I system.
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4 Results from Relevant Data Collection Efforts

Portions of the enhanced FLIR/LADAR ATD/I system were developed during the course
of the contract; mainly in the area of background suppression of FLIR and LADAR
imagery. Section 4.1 documents results from the background suppression algorithms as
it applies to relevant FLIR/LADAR databases. In Section 4.2, results are given that
pertain to the application of the spoke filter on LADAR intensity imagery. To use spoke
filtering techniques on LADAR intensity imagery for registering FLIR (intensity)
and LADAR (range map) data is a novel idea that originated from this contract.
The ultimate goal is to match targets using the two sensors. Fusing the two on a feature
level is a fundamental step towards developing the proposed ATD/I system mentioned
in Sections 3.1.3 and 3.2.3.

Also included in this section are variations between theory and practice. Obviously,
discrepancies occur when one deals with real imagery. Not only algorithms are modified
and changed when outputs are not what are expected; but more importantly, new insights
into the problem come to mind during the process.

4.1 Background Suppression

Results obtained by background suppression are a reflection of the feature extrac-
tion/classification paradigm that was also to be the approach used for the enhanced ATD/I
system. All tests and evaluations were processed with real image databases during the
course of the contract. The results given in this section are in the form of
1) a confusion matrix for the FLIR background suppression algorithm delivered to
Lockheed Martin in December, 1995,
2) tables describing percent correct/incorrect classification for test sets (after learn-
ing on training data) for the LADAR-based system, and
3) selected images explaining the differences between FLIR-based versions.
Unfortunately, because of limited resources no performance results were obtained with
simulated data.

4.1.1 FLIR-Based Background Suppression

Beginning in the fall of 1994, the FLIR-only background suppression filter was primarily
developed and evaluated for a year. It was trained and tested on FLIR imagery collected
from two visits to the Demo C site in June, 1995. All visits took place at the Lockheed
Martin facility in Denver, Colorado.

Section 4.1.1.1 contains a confusion matrix showing targets versus clutter results from
imagery taken during the Denver visits. Results listed in Table 2 correspond to the
output of the version given to Lockheed Martin for Demo II. Also in this section, as
experience was gained with real imagery on the algorithm suite, a discussion is given on
the different updates that were used during testing.
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4.1.1.1 Performance Results from Demo C Site Visits

With a different set of weights from the Demo C version, Table 2 describes the perfor-
mance results for the FLIR-based background suppression filter. The training database
was the same for both: 31 targets and 36 clutter objects taken from 37 FLIR images.'”
The only difference between the two was in the off-line training curriculum. In the post
Demo C case, it consisted in 67 vectors introduced to the classifier portion of the back-
ground filter in a random sequence of 67 for 10 cycles (rather than once as in Demo C).
The results with this additional step was dramatic on the targets detected from the test
set. As shown in Table 2, 88.9% detection was achieved (94.1% if one of the misses is
discounted — see Table 2). The false-alarm rate is high at 33.5%. It should be noted
that the objective was to reduce the high number of detections while still retaining
some clutter objects for further processing with back-end target identification algo-
rithms. The algorithm suppresses false detections, but does not eliminate all false

objects. When the problem is placed in that framework, the high false-alarm rate may
not be as bothersome.

Table 2. Performance results in medium to high clutter FLIR imagery demonstrates the target
detection capability for the FLIR-based background suppression algorithm. Sixty-seven
objects were selected manually from two June 1995 visits to the Denver Lockheed Martin
facility. With random selection of the training vectors, the algorithm performed very well in
detecting 16 out of 18 target-like objects (one of the misses was counted even though one
vehicle obscured another; thereby changing the overall shape). Two-thirds of the clutter
was classified correctly. False-alarms are not as costly as missing targets, since back-end
target identification algorithms were able to reject clutter objects in many cases.

FLIR-BASED BACKGROUND SUPPRESSION FILTER
TEST SET RESULTS

(CONFUSION MATRIX)
Object Target Clutter
Number (% Correct) Number (% Correct)
Target 16 (88.9) 2(11.1)
Clutter 93 (33.5) 185 (66.5)
Training Set of 67 Objects Over 37 FLIR Images (size = 256 x 256):
31 Targets
36 Clutter
Test Set of 296 Objects Over 15 FLIR Images (size = 256 x 256):
18 Targets
278 Clutter

' The overall FLIR database was composed of 1) 37 training images obtained during the two June visits; and, 2) 15
test images gathered during the tech demonstration at Demo C. All objects were detected first by the spoke filter
(67 for the training phase and 296 for the test exercise). The images were (256 x 256) pixel regions.
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(a) Original (After Contrast Enhancement) (b) Blob (Boundary) Detected Output (From Spoke Filter)

(c) Detected Objects (Boxes) Over Original (d) Filtered Objects After Hierarchical Classification

Figure 24. The FLIR-based background suppression version delivered to Lockheed Martin
gave the results shown in Figure 24(d) for the FLIR image of Figure 8.

The algorithm suite delivered to Lockheed Martin in December 1995 consisted of a spoke
filter (for blob detection), boundary detector (hot blobs only), log-polar feature extraction
(with some minor but not catastrophic software errors), and two sets of trained weights
(in the form of tree structures from the ART 2-A based, hierarchical classifier).?

Returning to the processed FLIR image in Figure 8, Figure 24 gives the output from
the FLIR-based background suppression algorithm for the weights that produced Table 2.
Notice that the hierarchical classifier only pruned off four clutter objects: going from
11 in Figure 24(c) to 7 in Figure 24(d). Comparing the images in Figure 24(b) and
Figure 24(d), one sees that the algorithm kept a few that were obviously clutter, while
the rest may be mistaken for targets. The confidence value for the true target turned

2 The two sets consisted of the weights that produced the results for Table 2 and the output during Demo C.
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out to be 0.8877, while the object in the upper left of Figure 24(d) had the next highest
value at 0.8004.2! From the boundary (blob) image in Figure 24(b), the upper left object
looks like a small target.??

4.1.2 LADAR-Based Background Suppression

The algorithm was tested on LADAR imagery from the "hobby shop" database taken
at Fort Carson, Colorado with the Alliant Techsystems LADAR (its resolution was
approximately 1 pixel per foot on target; see reference [BHPHY94]). In order to evaluate
the discrimination capability of the algorithm, seventy objects (35 target and 35 clutter)
were selected manually from the LADAR image set. Through the feature generation
portion of the algorithm, a 125-element vector was produced for each object. This process
was an outcome of a variety of training/test scenarios performed on the feature set.

The results shown in Tables 3 through 6 summarized the work done during the period
January to mid-July, 1994 (in preparation for Demo B). These tables demonstrate the
loss of (classification) generality in the test set (and therefore recognition capability)
as the number of clusters increase from two to fourteen. Notice that the unsupervised
clusterer has an adjustable parameter that determines how closely feature vectors must
match. A value near 0.3 will generate two or three clusters, while a number close
to 1.0 can produce as many as 20 clusters for the feature vector set used in this test.
Table 3 contains the classification results when the unsupervised clusterer (i.e., the RCN
algorithm) generates only two clusters. In this case, 85% correct classification is obtained
for 20 test feature vectors. Table 4 shows 85% for three. Even up to six clusters, one can
expect 80% correct classification for 20 unknown objects (after training on the remaining
50). Finally, Table 6 depicts 50% correct classification (or random chance) for the 20
test vectors. Table 6 demonstrates that a large number of clusters affect the algorithm
to behave in a mere pattern memorization mode accompanied by poor generalization
capability (especially when compared to results shown in Tables 3 and 4).

2 The confidence measure used for the hierarchical classifier is normalized correlation (as the similarity criterion)
between the input and cluster prototype vector associated with the winning node.

2 This version of the algorithm does not incorporate range filtering; if included, all clutter objects would be removed
except for the one to the right of the true target in Figure 24(d).
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Table 3. Performance results for the LADAR-based background suppression algorithm with seventy
objects selected manually from the Fort Carson “hobby shop” database. The radial basis
function classifier categorized according to man-made or clutter classes after training on an
unsupervised classifier that generated two clusters. The values inside the bold box
show very good generalization results were obtained with this method.

LADAR-BASED BACKGROUND SUPPRESSION RESULTS
FOR 2 CLUSTERS*
PERCENT | PERCENT
TRAINING| TEST CORRECT | INCORRECT
SET SIZE | SETSIZE | TOTAL | (TEST SET)**| (TEST SET)
65 5 70 100.0 0.0
60 10 70 90.0 10.0
50 20 70 85.0 15.0
40 30 70 70.0 30.0
30 40 70 70.0 30.0
* NUMBER OF CLUSTERS GENERATED BY THE UNSUPERVISED CLUSTERER
IN THE FRONT-END PORTION OF THE RADIAL BASIS FUNCTION CLASSIFIER
DURING TRAINING.
** CORRECTLY CLASSIFIED INTO MAN-MADE AND CLUTTER CATEGORIES.

Table 4. Performance results for the LADAR-based background suppression algorithm after the
unsupervised classifier generated three clusters. The results obtained here approximate
Table 3; i.e., good generalization performance is achieved (see values inside bold box).

LADAR-BASED BACKGROUND SUPPRESSION RESULTS
FOR 3 CLUSTERS*
PERCENT | PERCENT
TRAINING | TEST CORRECT | INCORRECT
SETSIZE | SETSIZE | TOTAL | (TEST SET)*| (TEST SET)
65 5 70 100.0 0.0
60 10 70 80.0 20.0
50 20 70 85.0 15.0
40 30 70 70.0 30.0
30 40 70 70.0 30.0
* NUMBER OF CLUSTERS GENERATED BY THE UNSUPERVISED CLUSTERER
IN THE FRONT-END PORTION OF THE RADIAL BASIS FUNCTION CLASSIFIER
DURING TRAINING.
* CORRECTLY CLASSIFIED INTO MAN-MADE AND CLUTTER CATEGORIES.
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Table 5. Performance results for the LADAR-based background suppression algorithm after the
unsupervised classifier generated six clusters. For this test set, the algorithm displays an
obvious degraded performance when compared to the results in Table 3 and 4.

LADAR-BASED BACKGROUND SUPPRESSION RESULTS
FOR 6 CLUSTERS*

PERCENT | PERGENT

TRAINING |  TEST CORRECT | INCORRECT
SET SIZE | SETSIZE | TOTAL | (TEST SET)*| (TEST SET)

65 5 70 100.0 0.0

60 10 70 70.0 30.0

50 20 70 80.0 20.0

40 30 70 70.0 30.0

30 40 70 72.5 275

* NUMBER OF CLUSTERS GENERATED BY THE UNSUPERVISED CLUSTERER
IN THE FRONT-END PORTION OF THE RADIAL BASIS FUNCTION CLASSIFIER
DURING TRAINING.

** CORRECTLY CLASSIFIED INTO MAN-MADE AND CLUTTER CATEGORIES.

Table 6. Performance results for the LADAR-based background suppression algorithm after the
unsupervised classifier generated fourteen clusters. Here, substantial degradation has taken
place. Mere pattern memorization with very little classification generalization has occurred.

LADAR-BASED BACKGROUND SUPPRESSION RESULTS

FOR14 CLUSTERS*
PERCENT

TRAINING | TEST CORRECT | INCORRECT
SET SIZE | SETSIZE | TOTAL | (TESTSET)**| (TEST SET)

65 5 70 90.0 10.0

60 10 70 60.0 40.0

50 20 70 50.0 50.0

40 30 70 56.7 43.3

30 40 70 72,5 27.5

* NUMBER OF CLUSTERS GENERATED BY THE UNSUPERVISED CLUSTERER
IN THE FRONT-END PORTION OF THE RADIAL BASIS FUNCTION CLASSIFIER
DURING TRAINING.

** CORRECTLY CLASSIFIED INTO MAN-MADE AND CLUTTER CATEGORIES.
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4.2 FLIR/LADAR Fusion for Proposed ATD/I System

Due to program restrictions, there was not enough time to do extensive work on the
proposed ATD/I system (described in Sections 3.1.3 and 3.2.3); although, one important
experiment was accomplished. The idea was to use the FLIR-based background sup-
pression filter of Section 3.1.1 on LADAR intensity imagery. Can target detection be
possible with a background suppression algorithm that was primarily developed for
FLIR imagery? The answer should be yes; since, the manner in which the filter oper-
ates, by accumulating digital blob evidence, makes it (imaging) sensor independent.
As demonstrated in the next section, the results with LADAR intensity images show that
such an approach works surprisingly well. With the right adjustments on the FLIR-based
background suppression filter, it can detect and segment targets from background just as
well, sometimes better, than comparable scenes with 3-5 yum Amber FLIR imagery.

4.2.1 Selected Imagery - LOCAAS MICOM Collection

The FLIR-based background suppression filter was tested on three (representative)
LADAR intensity images (containing five targets) from the LOCAAS Micom collec-
tion. As this section will point out, the output produced by the algorithm indicates that
it performed soundly on the LADAR intensity images. With more work and testing, a
modified version of this algorithm can be included in the development of the feature
extraction portion of the proposed, FLIR/LADAR ATD/I system shown in Figure 13.

Testing was performed on the LOCAAS 2-channel LADAR MICOM tower data. It was
collected by Lockheed Martin Vought Systems (formerly, Loral Vought Systems). The
database, 40.2 megabytes in size, contains intensity and range (diode pumped) LADAR
imagery. The LOCAAS collection includes a variety of targets (e.g., M60, M113, T72,
5 ton truck, personal car, water tower, trees, efc.). In April 1996, this imagery was placed
on the Lockheed Martin file server for use by the RSTA community.

The background suppression software program employed the trained weight set (in tree
structure form) that was used for Demo C (July, 1995). Obviously, several changes were
made in order to accommodate the LADAR imagery. The following two major changes
were made to the FLIR-based algorithm.

e The boundary portion of the algorithm (see the subsection on spoke fil-
tering techniques in Section 3.1.1.1) incorporated “black-hot” software for
darker-than-background targets (this feature is required for any future FLIR-based
versions too). LADAR intensity imagery may contain targets that are either darker
or brighter than the background.

e The radius size for digital blobs that can be detected with the spoke filter went
from 10 to 17 pixels. This parameter governs the approximate target size
screening capability of the spoke filter module of the background suppression
algorithm. The LOCAAS targets are at a closer range (i.e., between 100 and
300 meters) than the FLIR databases used in the development of the original
algorithm.

Also, in order to go from an image size of (340 x 148) pixels to (256 x 256) required for
the suppression filter, the selected LADAR intensity imagery were cropped and padded
with a rough estimate of the gray-level background (i.e., grey level value of 155). These
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changes were all that could be done with the limited amount of time.

The results that are shown in Table 7 were surprisingly good for the three LOCAAS
intensity images. The spoke filter part of the background suppression algorithm detected
all five targets in the image set. The back-end hierarchical classifier detected three out
of five targets. In classification terminology, three were classified as targets (in image
£7005611i.dat, the M60A3 tank two hits were classified as one target), two incorrectly
classified as clutter objects, and 24 objects correctly classified as clutter. From the small
image set used for this experiment, the results compare favorably to the very best of the
3-5 pm Amber FLIR imagery taken for the RSTA community.

Table 7. Results show that the FLIR-based background suppression filter is capable of detecting
and segmenting targets from LADAR intensity imagery. More work is needed for
feature level fusion; but, the path taken here looks very promising.

FLIR-BASED BACKGROUND SUPPRESSION FILTER RESULTS ON
SELECTED LOCAAS LADAR INTENSITY IMAGERY

FILE TYPE {SUBTYPE| RANGE | SPOKE (% OF TARGET) | CLASSIFIER (% OF TARGET)
NAME {Meters) DETECTION DETECTION

f7004ati.dat* | Tank T72 253.20 Yes (95) No (0)

f7004atidat | APC | BMP | 273.75 Yes (100) Yes (100)

f700561i.dat** | Tank | M60A3 | 237.10 Yes (Approx. 15) Yes (Approx. 10)

f7004eti.dat™" | Truck | M35 | 295.20 Yes (100) No (0)

f7004etidat | Tank | M48 | 317.25 Yes (100) Yes (100)

*SPOKE FILTER: 3 DETECTIONS AND 2 FALSE ALARMS; CLASSIFIER: 4 CORRECTLY CLASSIFIED (1 TARGET & 3 CLUTTER) OUT OF 5.

*"SPOKE FILTER: 3 DETECTONS ON SAME TARGET (GUN BARREL, FRONT PART OF TANK, & 2 BACK WHEELS); CLASSIFIER: 14 COR-
RECTLY CLASSIFIED (2 TARGET & 12 CLUTTER) OUT OF 16.

“*"SPOKE FILTER: 2 DETECTIONS AND 7 FALSE ALARMS; CLASSIFIER: 8 CORRECTLY CLASSIFIED (1 TARGET & 7 CLUTTER) OUT OF 9.
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5 Conclusions

Starting from September 12, 1993, the objective for this program was to develop a high
performance FLIR/LADAR sensor fusion algorithm suite for target identification that
advances the state of the art in image understanding within a SSV/RSTA environment.
During the last 36 months, as shown in Figure 25, the task has emphasized background
suppression in order to achieve target detection and identification with FLIR and LADAR
sensor data. The justification for stressing background suppression is that one must be
willing to tackle clutter rejection at the beginning of target detection and identification
development. It cannot be an afterthought or an “add on” after the system is almost
completed. It must be integrated into any planned ATD/R/I system. Ground rules must
be established on the difference between targets and clutter objects. To obtain high
detection, low false-alarm rates, and robust identification of targets, one must deal with
background suppression and multi-sensor fusion on a feature level at the onset.

Rockwell's
Baseline
ATD/I System

Adaptive
Model-Based
Techniques

/" _Adaptive
Background
Suppression

o Not Done Under
Current Contract

Figure 25. Background suppression techniques, whether FLIR or LADAR oriented, were
used towards the target detection and identification objective.

The approach focused on two important ideas to achieve significant improvement in target
detection and identification capability: 1) to characterize background clutter in FLIR
and LADAR imagery by formulating the problem in a feature extraction/classification
paradigm; and, 2) to use the background suppression approach as the basis for building
an advanced ATD/I system.

On the characterization of background clutter, by employing the feature extrac-
tion/classification techniques described in Section 3, it makes the overall task of target
detection and identification easier. One can introduce learning techniques into the prob-
lem; therefore, making the system more adaptive to a changing environment. It is a
“smart” prescreener for the back-end target identification subsystem. If the background
suppression algorithms identify objects that are obviously clutter, it then makes the job of
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accepting only targets and few very near target-like clutter objects more manageable. De-
tecting and identifying clutter removes potential target candidates before further (costly)
processing is performed by the ATD/I system. The implication by the methodology done
here is that it is better than having the ATD/I system process (or more specifically clas-
sify/identify) all likely candidates through the system. The justification for suppressing
clutter objects is necessary because lowering the target detection threshold in sensed im-
agery to detect faint or hard-to-see targets increases the false-alarm rate. A higher number
of clutter objects intermixed with real targets translates into a lower performance for any
established (or proposed) ATD/I system.”® Lower performance is virtually guaranteed
because the system spends longer time evaluating and potentially misclassifying spurious
background clutter. The background suppression techniques developed here aid in
target detection and identification by pruning much more effectively false clutter
off target candidate lists.

Adaptive Model-Based Rockwell's Baseline
Techniques ATD/l System

N

Feature Extraction

Adaptive \
Background
Suppression

Classification

Not Done Under
Current Contract

Figure 26. The approach implemented for the enhanced FLIR/LADAR ATD/I system
was the feature extraction/classification paradigm.

On the issue of building a more powerful ATD/I system, the approach was to use the
platform implemented for background suppression as the foundational algorithm suite
— see Figure 26. As stated in Sections 3.1.3 and 3.2.3, an innovative feature extrac-
tion/classification paradigm that would eventually incorporate FLIR and LADAR data
was first applied to FLIR-based and LADAR-based background suppression. The intent
was to gain developmental experience on the new techniques. The background suppres-
sion feature extraction/classification algorithms would then be modified and extended to
target identification using a model-based (CAD) approach as described in Sections 3.1.3
and 3.2.3. The new system was to have fused data on a feature rather than pixel
level basis. Faster registration of objects contributing to a higher level of synergy be-
tween FLIR and LADAR sensors was the goal here (see the overall flow diagram in

2 It does not mean that the system should strive for zero percent false-alarms on the target detection portion — which
is a mistake that some people make. In many ATD/I systems, to contend for a zero false-alarm rate is too costly.
This goal places too much responsibility on the target detection subsystem. A much better approach is to have the
target identifier cope with an adequate number of targets that includes some obvious false-alarms, but not too high
s0 as to overwhelm the ATD/I system. This rationale was used in the FLIR and LADAR background suppression
algorithms developed under the contract.
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Figure 23). The new target identification system will enhance mission effectiveness
by: 1) a higher detection and lower false-alarm rate that is due to characterization
of clutter on the front-end of the ATD/I system; 2) fusing FLIR and LADAR data
with a common feature vector that will create a robust environment for accurate
classification and identification; and, 3) a hierarchical classification that will ma-
neuver through feature space adaptively for a higher rate of target identification
performance. Such a ATD/I system will lay the foundation for future handling of
target articulation.
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6 Legacy

Rockwell brought several important products to the UGV/RSTA program. The critical
item of the project was the work done towards improving target detection and iden-
tification. This work was in the form of suggestions and flow diagrams mentioned in
Sections 3.1.3 and 3.2.3 of the proposed, FLIRZ/LADAR ATD/I system. The method used
towards the goal of advancing the state of the art was the developing and testing of ATD/I
algorithms on real FLIR and LADAR imagery. These algorithms were mainly in the area
of background suppression. The rule of thumb that was followed in developing a new
ATR system was that any advanced target detector or identifier that does not incorporate
background or clutter suppression from the ground up is doomed to poor performance
in most realistic scenarios. Many hours of thought, planning, and technical experience
were put into the enhanced system work which culminated in the present report.

Second in importance was the development of the FLIR-based background suppression
software module. The module was delivered to Lockheed Martin (Denver) in December,
1995. The aim was to integrate it on to the SSV’s as a FLIR stationary detector for
Demo II in May, 1996 at Fort Hood. But for some unknown reason it was not used by
Lockheed Martin for the demonstration.

The following sections describe in more detail the Rockwell, FLIR/LADAR fusion target
detection and identification legacy of products. It is partitioned into: 1) the major
technical reports and delivered software in Section 6.1; and, 2) suggestions on a future
direction for RSTA and general recommendations in Section 6.2.

6.1 Technical Reports and Software

During the life of this contract’s period of performance, several technical reports and
software programs were produced by the effort. The following items describe major
products that were finished during the 36 month period.

¢ Final Report: From this report enough documentation is given that allows
someone downstream to understand and build on Rockwell’s contribution. It
explains the motivation and rationale behind the approach to improve ATR
systems in general. It comments on why state of the art techniques such as
hierarchical neural nets and generic maps can be incorporated in a ATD/I system
in order to perform multi-sensor fusion, background clutter suppression, and
multi-frame recognition. Also, documented results are presented on how well
the background suppression filter (both FLIR and LADAR) performed with real
imagery. .

¢ FLIR-Based Background Suppression Software: A software package was de-
veloped and delivered to Lockheed Martin in Denver during the month of De-
cember, 1995. It incorporated many of the FLIR-based background suppression
ideas in Section 3.1.1. As mentioned in the performance results section (see
Section 4.1.1), it was primarily trained and tested on FLIR imagery collected
from two visits to the Demo C site in June, 1995. The programs were written in
Kemighan and Ritchie “C” source code; they conformed to Lockheed Martin’s
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Interface Control Document guideline for real-time testing (on an SSV). The al-
gorithm suite consisted of a spoke filter (for blob detection), boundary detector
(hot blobs only), log-polar feature extraction (with some software errors but not
catastrophic), and the trained weights (tree structure from an ART 2-A based,
hierarchical classifier) from the same database used to obtain the performance
results shown in Table 2.

o Interim Technical Report: On April 15, 1994, a 13 page interim technical
report was sent to DARPA depicting the progress made during the first six
months of the contract (see [Roc94] for the primary reference and [GW94]
for a paper summarizing most of the work done in 1994). Besides describing
a preliminary form of the enhanced ATD/I system given here, the document
contained valuable information concerning performance results and a general flow
diagram of Rockwell’s baseline (model-based), FLIR/LADAR ATR system. This
system was developed under previous ATR contracts and in-house IR & D. In a
lab demonstration for Demo B (July, 1994), it correctly identified an APC and
M-60 tank from Fort Carson “hobby shop” database. Finally, the report made a
suggestion on incorporating micro-Doppler (vibration) in any future ATR systems.
Using micro-Doppler to identify targets may answer some of the concerns with
the RSTA algorithms. For example, one problem is the effectiveness of target
detection and identification over realistic distances (4 to 5 kilometers minimum).
The issue was brought up during the Demo 1I concluding workshop at Killeen,
Texas (June, 1996). This problem and others are addressed in the next section.

The final section of this report will focus on important issues to solve, lessons learned
on this program, and recommendations relating to any “follow on” RSTA work. The
motivation is to satisfy the military user. And, in the course of satisfying the customer one
cannot help to advance the state of the art in image understanding and ATR technology.

6.2 Future Direction and Recommendations

The attempt by the RSTA co-contractors is a noble one: to push the envelope in image
understanding and ATR technology while satisfying the military customer. But to be
realistic is to know the technical limitations of the product that one offers to the user;
and, to say what can or cannot be done. After a reality check, one should next lay out a
plan to reach achievable goals. This section deals with answering some of the military
criticism with RSTA and technical hurdles necessary to arrive at useful ATD/R/I systems.

In answering criticism and recommending new directions, the problem will first be stated,
then followed by a response. In replying to the problem, new areas of potential research
will be pointed out whenever possible. As noted, some of the tough questions where
brought out by military users at the Demo II workshop. Rockwell representatives attended
the Demo II concluding workshop during June 19-20, 1996 in Killeen, Texas. The
following problems bring out some of the main concerns with the RSTA algorithms; and
indirectly, pave the way for new directions that will ultimately improve the technology.

o Let’s be practical, target detection, recognition, and identification should
be used over 5§ km (maybe, 4km minimum); anything closer would not be
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realistic. One military officer at the Demo II concluding workshop made the
above statement (or words to the effect). He touched on a very important concern
to the military. The 4-5 km distance seems be the threshold for many military
scenarios.

Response: At a 4-5 km distance, most first generation FLIR’s would have
approximately one to two pixels-on-target (POT) if any. Second or
third generation FLIR’s may be somewhat better. At minimum, for
example, a FLIR-based blob detector would require between 5 to 10
POT’s for the smallest targets. A new approach would be to use
“track-before-detect” techniques followed by micro-Doppler.

New Direction: Track-before-detect algorithms detect targets of known charac-
teristics over a image sequence. Usually, for example, targets
may have a low observable cross section at a far distance. One
may utilize knowledge of the object’s dynamic behavior in or-
der to detect it (e.g., M1 tank’s speed, maneuverability, and
potential paths for a certain terrain). Detection is possible by
looking within a spread of kinematically possible templates. For
example, Seidman in [Sei90], has the idea of utilizing normally
unused information remaining in the pattern formed by a track in
order to dig out tracks from a highly noisy background. One can
increase the sensor’s effectiveness by utilizing a neural network
to recognize these “hidden by the noise” patterns. A RSTA
implementation of track-before-detect algorithms would be to
scan with a FLIR in some predetermined fashion over a de-
sired area looking for targets with characteristically kinematic
pattern (similar to Seidman). One would repeatedly do this
scanning over a period of time in order to build up target and/or
clutter evidence. Algorithms (e.g., motion-based, blob-based,
etc.) would be specifically designed to gather such evidence
over time. If one finds suspected objects (or regions), then a
micro-Doppler approach can be used for target identification.
Coherent LADAR sensors can measure target Doppler. They
allow for the determination of target velocity (useful for detec-
tion) and vibration (useful for identification). Vibration-based
target identification requires a classification algorithm suite and
target vibration signatures.

o The FLIR’s on the SSV’s just don’t do the job; especially, during daylight
hours. What we need are second or third generation FLIR’s. The FLIR’s on
the SSV’s are currently first generation (i.e., 3-5 yum Amber FLIR). Performance
is poor during daylight hours (say, 0900 to 1800 hours on a typical sunny day).
For example, rocks, shrubs, trees, buildings, and roads become just as hot as
targets; they work against finding adequate object boundaries.

Response: Second (and possibly third) generation FLIR are not much better.
Also, second generation FLIR’s are an order of magnitude more costly
than the FLIR’s used on the SSV’s. Cost would be prohibitive at this
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point. A different combination of sensors and algorithms may give
higher performance for ATR applications. In particular, the work
done by the RSTA contractors, Colorado State and Johns Hopkins,
looks promising. Augmenting FLIR with color-based recognition and
visual polarization techniques may be a fruitful path.

New Direction: A new approach, again, would be to combine the first generation
FLIR with a low-cost LADAR micro-Doppler unit. First, scan
areas of interest with the FLIR, then direct the LADAR to
suspected targets. The unit would be fast, pruning off obvious
clutter candidates quickly. It would able to work in conjunction
with more sophisticated ATD/R/I systems.

It seems that some are shy about using active sensors for target detection
and identification. There are military scenarios where one could use them
with no problem. The same military officer who made a comment on realistic
images of RSTA sensors at the Demo II workshop made another important point
concerning active sensors. He stated that even activities as benign as looking
through a pair of binoculars can be detected by the enemy, if the sun’s glare
hits them at a certain angle. The inference here is that an active sensor such as
LADAR can be used by the military customer for appropriate applications.

Response: The military’s thinking on this issue is almost completely turned
around from just a few years ago. It would be to the RSTA com-
munity’s advantage to incorporate more active sensors for imaging,
detection, and ranging applications.

New Direction: Low-cost LADAR’s and MMW units can be integrated into any
sensor suite. A scheme similar to what is described in this report
for the enhanced, ATD/I system (in Sections 3.1.3 and 3.2.3)
would improve performance. An added feature would be to do
stored model verification on the target identified by the ATD/I
system. This technique would implement edge/line detection
(see Canny [Can86]) and matching algorithms (e.g, Bejanin
[BHMN94]) in order to back project the chosen wire-frame
model to the sensed object (at the estimated orientation and
position) a la Lowe’s method in [Low85] or the University of
Southern California’s approach in reference [BHMN94].

Can anything be done to exploit a sequence of images in future target
detection and identification systems? At the present time, moving target
detection (obviously) is the only RSTA area that does anything with a previous
history of images. Why are RSTA co-contractors not taking full advantage of
multi-frame imagery for (stationary) target detection and identification?

Response: Much work is required to implement a target detection and identifi-
cation system that takes into account previous target history in the
current scene for real-time use. Blending previous target history to
the present target hypothesis is difficult. It is basically an art form at
this stage of ATR technology.
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New Direction: Future ATR work must face the issue of sequential target iden-
tification. New research should center on not only fusing com-
plementary sensor suites; but, just as important, previous target
history. Resetting the ATR system for every new image fails
to capitalize on what transpired before. To implement Wax-
man’s approach (in [WSBF93]), which was briefly mentioned
in this report in Section 3.2.3, may be a good start. The idea is
elegant (stemming from visual biological studies with primates).
One creates different aspect transitions off-line (analogous to a
transition matrix in controls theory). These transitions depict
different target sequences that would be permitted by the net-
work (e.g., a front part of a tank would not be immediately
followed by its back side). Once the learning network accepts
only permitted target sequences, then in the on-line mode it
would score the real-time target sequence accordingly. The net-
work would introduce a confidence value on the recognized tar-
get aspect, disallowing wildly discordant views in the process.
Thus, previous target history would have a contributory part in
identifying the target for the current scene.

In summary, new ATR systems must fuse passive and active sensors (automatically
registering them either on a pixel, feature, or symbolic level), deal with articulation and
occlusion, and integrate past imagery as it works towards target detection, recognition,
and identification in real-time. But, whatever approach to the problem is taken, it must
not lose sight of the end-user. For example, at the concluding Demo II workshop in
Killeen (Texas), one of the Army’s technicians, trained specifically on the UGV/SSV’s
beforehand, claimed that the FLIR stationary target detector was disappointing. He said
that there were too many detections (too many false-alarms). Detecting targets during the
day over varying environmental conditions with a FLIR is a difficult but a fundamental
problem. Therefore, let us work to advance the state of the art with sound, fundamental
image processing practices as the community strives to develop more advanced image
understanding algorithms. The work described in this report attempted to do both.

49



Bibliography

[AIGL90]

[BGW95]

[BHMNY94]

[BHPHY94]

[BWO1]

[Can86]

[CG8T]

[CGRI1]

[FKMHH92]

[GW94]

[HH93]

[HSK95]

Jose Ambros-Ingerson, Richard Granger, and Gary Lynch. Simulation of palecortex
performs hierarchical clustering. Science, 247:1344-1348, 16 March 1990.

H. Borsi, E. Gockenbach, and D. Wenzel. Separation of partial discharges from pulse-
shaped noise signals with the help of neural networks. In IEE Proceedings - Science,
Measurement, and Technology, volume 142, pages 69-74, January 1995.

M. Bejanin, A. Huertas, G. Medioni, and R. Nevatia. Model validation for change
detection. In 1994 Image Understanding Workshop Proceedings - ARPA, volume 1,
pages 287-294, November 1994.

J. Ross Beveridge, Steve Hennessy, Durga P. Panda, Bill Hoff, and Ted Yachik.
November 1993 Fort Carson RSTA data collection - final report. Technical report,
Colorado State University, 19 January 1994.

A. A. Baloch and A. M. Waxman. Visual learning, adaptive expectations, and
behavioral conditioning of the mobile robot MAVIN. Neural Networks, 4(3):271-
302, 1991.

John F. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6):679—-698, November 1986.

Gail A. Carpenter and S. Grossberg. ART 2: Self-organization of stable category
recognition codes for analog input patterns. Applied Optics, 26(23):4919-4930,
December 1987.

Gail A. Carpenter, S. Grossberg, and George Rosen. ART 2-A: An adaptive resonance
algorithm for rapid category learning and recognition. Neural Networks, 1(4):493—
504, 1991.

R. J. Fogler, M. W. Koch, M. M. Moya, L. D. Hostetler, and D. R. Hush. Feature
discovery via neural networks for object recognition in SAR imagery. In 1992 IEEE
International Joint Conference on Neural Networks, volume 4, pages 408-413, 1992.

Victor M. Gonzalez and Paul K. Williams. Summary of progress in FLIR/LADAR

fusion for target identification at Rockwell. In 1994 Image Understanding Workshop
Proceedings - ARPA, volume 1, pages 495-499, November 1994.

D. R. Hush and B. G. Home. Progress in supervised neural networks. IEEE Signal
Processing Magazine, pages 8-39, January 1993.

Tetsuji Haga, Koichi Sasakawa, and Shinichi Kuroda. The detection of lane boundary
markings using the modified spoke filter. In IEEE 1995 Symposium Proceedings of

50




[KC89]

[Low85]

[MACFH92]

[MS81]

[RM86]

[Roc94]

[Rya88]

[Sei90]

[TGY94]

[WS92]

[WSBF93]

the Intelligent Vehicles, pages 293-298, September 1995.

R. Krishnapuram and D. Casasent. Determination of three-dimensional object location
and orientation from range images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(11):1158-1167, November 1989.

David G. Lowe. Perceptual organization and visual recognition. Kluwer Academic
Publishers, Inc., Boston, 1985.

M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M. Hummels. On the
training of radial basis function classifiers. Neural Networks, 5(4):595-603, 1992.

L. G. Minor and J. Sklansky. The detection and segmentation of blobs in infrared
images. IEEE Transactions on Systems, Man, and Cybernetics, 11(3):194-201, March
1981.

David E. Rumelhart and James L. McClelland. Parallel distributed processing,
volume 1. MIT Press, Cambridge, MA, 1986.

Rockwell. FLIR/LADAR fusion for target identification - April 15, 1994. Technical
report, Rockwell International Corporation, C94-14.1/034, 15 April 1994.

T. W. Ryan. The resonance correlation network. In 1988 IEEE International Joint
Conference on Neural Networks, volume 1, pages 673—-680, 1988.

A. N. Seidman. Neural networks and digital avionics. In IEEE/AIAA/NASA 9th Digital
Avionics Systems Conference Proceedings, pages 669—-678, October 1990.

Ian Taylor and Mike Greenhough. S-ART: a modified ART 2-A algorithm with rapid
intermediate learning capabilities. In 1994 IEEE International Joint Conference on
Neural Networks, volume 2, pages 606-611, 1994.

A. M. Waxman and M. Seibert. Adaptive 3D object recognition from multiple views.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):107-124,
February 1992.

A. M. Waxman, M. Seibert, A. M. Bernardon, and D. A. Fay. Neural systems for

automatic target learning and recognition. The Lincoln Laboratory Journal, 6(1):77~
116, 1993.

51




